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For decades life on M a r s  has been a topic of considerable specula- 

tion. In the scientific press the most imaginative has been the llcanalill of 

Schiaparelli which ekolved in the hands of Lowell into an intricate system of 

irrigation canals bearing water from the polar caps to the thirsty Martians 

in the temperate and equatorial regions. 

and the current scientific consensus is that if life does exist on Mars it is 

in the form of simple organisms such a s  lichens, small plants, bacteria, 

etc. However the possibility of even such low forms of life i s  very exciting, 

and acts as the major spur to much contemporary work in exobiology. Mars 

This has been largely discredited, 

is the centerpiece of the exobiology program. 

A discussion of the present evidence for life on Mars must necessarily 

be subjective, since the observational data are not definitive. The bias which 

I wil l  introduce is a conservative one. I believe that every effort should be 

made to find an abiological explanation for each observation, and for their 

sum.  Furthermore the lack of a reasonable abiological explanation should 

not be used to argue for life, i f  there is  not at the same time a reasonable 

biological explanation for the datum. The understandable human desire to 

- 

find a Martian biota should not prejudice one to make positive statements 

which are  not justified by the facts. 

In this presentation I wil l  defer a discussion of the question of Martian 

life till the second half, reserving the first half for a review of the current 

knowledge of the Martian environment This will serve as a background not 

o for other papers in this series. 
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The Physical Environment 

The simplest starting point is a picture of the planet. In figure 1 

several of its characteristic features are  displayed. The overall color of 

the planet is reddish and is dominated by the bright areas, concentrated in 

the northern hemisphere (at the bottom of the picture since this was taken 

on an astronomical telescope). The very dark area near the center of the 

disc is  Syrtis Major, the darkest area on the planet. It is mainly south of 

the equator, but its tip extends over into the northern hemisphere. At the 

top of the picture is a bright, white spot - -  the south polar cap, at the 

other pole is a semi-transparent white haze. 

The important physical characteristics a re  summarized in Table 1. 

In preparing this table, and in the ensuing discussion, I have relied heavily 

on the excellent book by de Vaucouleurs, Physics of the Planet Mars 

(de Vaucouleurs, 1954). 

of a Martian library. 

graphic Story, by Slipher (Slipher, 1962). 

Despite its age it is a most valuable component 

I have also drawn greatly from Mars, The Photo- 

The mass of Mars has been determined precisely by measuring the 

Both a re  very small and orbits of its two satellites Phobos and Deimos. 

their diameters have been estimated from their observed brightness, 

assuming their reflecting power to be similar to their parent planet, to be 

23 - 30 and 11 - 14 k m  respectively. Their orbital radii are respectively 

9,340 and 23,500 km, and Phobos is distinguished by having its orbital 

period, 7 hours 39 minutes, shorter than the rotational period of the parent. 

The equatorial and polar diameters of Mars a re  somewhat contro- 

versial. The most recent determinations, by Dollfus using a birefringent 

micrometer (Dollfus, 1962) give Deq = 6790 h and Dpol = 6710 la, the 

optical flattening, (Deq -Dpol)/Deq, then being .0117. He observed no 
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difference in diameters for red and blue light. Previous work gave values 

within 100 km of these, but W.  H. Wright and others detected a difference 

in the diameters for red and blue light. Wright was the first to detect this 

phenomenon, where the diameter is 2 - 3 percent greater in the blue than 

in the red. This was interpreted as an atmospheric effect, suggesting there 

is a blue scattering and/or absorbing haze layer at an altitude of about 60 - 
100 km. 

greater limb darkening in the red than in the blue, and Dollfus' most recent 

Some investigators have suggested the effect is merely due to 

work reveals no difference at all. 

testify to the difficulty of obtaining the diameter of a planet which possesses 

The variety of opinions on the subject 

an appreciable atmosphere. 

biulogists, any information about the transmission properties of the atmos- 

While the diameter is not of importance to exo- 

phere which accrue from the diameter studies will be of direct and immedi- 

ate value. 

The actual value is also of some significance when considering the 

possible presence of a magnetic field. For an equatorial diameter C 6670km 

an iron core seems improbable whereas for higher values its existence is 

quite probable (MacDonald, 1963). Since it is believed that an iron core is 

necessary for a planet to possess a magnetic field, this in turn is dependent 

on the actual diameter. 

Another interesting question related to the observed diameters is also 

discussed by MacDonald (MacDonald, 1963). All observers a re  in agree- 

ment in reporting the optical flattening a s  .012.  However the flattening 

calculated from the satellite orbits is only . 0051 assuming the planet is 

in isostatic equilibrium. 

rocks then a flattening of . 007 could be sustained. Greater strengths a re  

improbable so that the high optical flattening can evidently not reflect the 

true effect but must be due to an atmospheric effect. Such an explanation 

If the rocks on M a r s  have a strength IOx our 
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has been proposed by Kuiper, and it appears reasonable although it requires 

further experimental confirmation. 

The orbital characteristics differ somewhat from Earth's. The mean 

6 6 distance from the Sun is 228 x 10 km compared to 150 x 10 lun for Earth, 

resulting in a mean solar constant at M a r s  which is 0.43 that at Earth, In 

the course of a Martian year of 687 days the planet travels an elliptic orbit 

6 6 with an aphelion of 248 x 10 km and a perihelion of 208 x 10 lan. The 

seasons a re  accordingly unequal in length, and since the tilt of the rota- 

tional axis is such that summer in the southern hemisphere occurs near 

perihelion this season i s  shorter and hotter than summer in the northern 

hemisphere. The seasons however are essentially similar to ours since 

the inclinations of the rotational axes of Mars and Earth to their respective 

orbital planes are  similar. 

The times when we can observe M a r s  at i ts  closest approach to Earth 

a re  called oppositions and occur 25 to 26 months apart. 

ellipticity of Mars' orbit all oppositions are  not equally favorable. 

last most favorable opposition w a s  in 1956, the next won't occur until 1971. 

Ln 1965 the apparent size of the Martian disc will  be only 14.0" compared 

with 24. 9'' in 1971. A further consequence of the ellipticity is that pheno- 

mena occuring during the southern summer and northern winter have been 

studied best since at the corresponding oppositions M a r s  is the closest to 

the Earth. 

Because of the 

The 

A parameter of great importance to life is the temperature. It is 

generally assumed that any Martian life will use water as  a solvent and the 

acceptable temperature regime will be dictated by this fact. The most 

extensive measurements were carried out at Lowell Observatory between 

1926 and 1943 by Lampland. H i s  data have been reduced and collated by 

Gifford (Gifford, 1956) who has presented the data in graphical form. In 
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figure 2 is shown a set of noon-time isotherms obtained for summer in the 

southern hemisphere. More refined temperature measurements have been 

made by Sinton and Strong (Sinton and Strong, 1960) using the 200 inch tele- 

scope at Mt. Palomar. I.n general they agree well with Lampland, although 

some differences such a s  the diurnal temperature variation are  present. The 

variation found by Sinton and Strong for a point on the equator is  given in 

figure 3 and reveals a daily temperature variation amplitude of about looo C. 

Both studies indicate that for the equatorial regions the temperatures for the 

dark areas a re  ca 8 O  higher than for the bright areas,  roughly what one would 

expect from the difference in albedos. 

An apparent discrepancy is present in the earlier data. Figure 4 shows 

the temperature along the noon meridian for the different seasons and does 

not reveal the expected effect of the ellipticity of the orbit. The solar con- 

stant at perihelion is 1.42 that at aphelion so that the noon temperature at 

the equator should be ca 27O C higher during southern summer than during 

southern winter. 

1961) but is not evident in Gifford's isotherms, suggesting there may be a 

rather large internal error  in Lampland's data. 

of Sinton and Strong cover only a very limited time period Lampland's data 

must still be used for many Mars studies. However the inconsistency be- 

tween the expected and observed seasonal temperatures at the equator 

suggests they be used with some reservation. 

This effect has been noted by Pettit and Nicholson (Pettit, 

Since the measurements 

Typical of the problems encountered is the determination of the atmo- 

spheric pressure. 

polarization of the reflected visible radiation as a function of phase angle, 

wavelength and position on the disc. 

pressures between 25 and 125 mb (1 bar = 10 dynes cm'2 = 0.987 atmo) 

were calculated. 

d Physics of the Planet M a r s )  characterizes most of the results as "doubtful", 

Many investigators have measured the brightness and 

After certain assumptions were made 

6 

The assumptions a re  so gross that de Vaucouleurs (p. 124 
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llrejectedll and tlillusorylt. The results that have 

greatest favor were obtained by Dollfus (Dollfus, 

-~ 

I 

I 
I 

been regarded with the 

1951) and fell between 

80 and 90 mb. 

assumptions are  1) there is no wavelength dependence of the 

However even these are highly uncertain since among his 

polarization of the surface reflected light, all of the observed wave- 

length dependence being due to atmospheric scattering, 

scattering by the atmosphere is molecular, with no contribution from 

particles, 3) there is no true absorption by the atmosphere. Unfortunately 

the observed brightness and polarization involve the interaction of many 

2) all of the 

independent variables and the data a re  not sufficient to permit a deter- 

mination of any one of them without invoking certain assumptions such 

a s  these. This introduces a large uncertainty into the derived results. 

Quite recently a new approach has been used to find the atmospheric 

pressure. Kaplan et a1 (Kaplan et al, 1964) have measured the intensities 

of two C 0 2  bands and used them to obtain the C02 abundance and the total 

pressure. From the equivalent width of the 5v3 band at 8700A, figure 5, 

they directly obtained an abundance, since for very weak lines the pres- 

sure has no effect. The C 0 2  abundance w a s  found to be 55 - t 20 m atmo. 

Then the total pressure was found using this, the intensity of the 2 . 0 6 ~  

band, and the laboratory obtained curve of the dependence of the equivalent 

width on the product of the abundance and the effective pressure, figure 6. 

The derived pressure was 25 - t 15 mb. 

direct than the others used and its result should be given the greatest 

This method is inherently more 

weight . 
The atmospheric pressure is of critical importance to engineers 

changed with the responsibility of placing a soft-landed biological labora- 

tory on the Mars' surface. It is also of direct interest to exobiologists 

since it limits the temperature range within which water can exist in the 
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liquid state. The phase curve of water, figure 7, is such that i f  the surface 

pressure is 25 mb liquid water can exist only in the range 0 - 20° C. As the 

pressure is lowered the upper temperature limit i s  also reduced, being only 

8 O  C for a pressure of 11 mb. This discussion applies strictly to pure water; 

for aqueous solutions of electrolytes the upper temperature will be raised and 

the lower one decreased. Yet the point is still valid, and will  be particularly 

germane if the uptake of water by Martian organisms (assuming they exist) 

occurs only during those brief periods when water is present on the surface 

in the liquid phase. 

Of the various gases suspected to be present in the Martian atmosphere 

only C 0 2  and H 2 0  have been detected. The former was first noted by Kuiper, 

and, a s  mentioned previously, is currently estimated to have an abundance of 

55 t 20 m atmo. The study of Kaplan et al, which gave this number together 

with the low value of the pressure, was actually designed to detect H 2 0  vapor. 

Observations were made when the relative velocity of M a r s  to Earth was at a 

maximum, ca 14 k m  sec”. This gives any absorption lines on Mars a Doppler 

shift, so that their centers a re  displaced from the centers of the corresponding 

telluric lines. 

showed H20  lines displaced by the calculated amount, figure 8. 

tensities of these weak l ines  and the pressure of 25 + 15 mb they derived an 

H 0 abundance, averaged over the disc, of 14 - i 7 microns of precipitable H 2 0 .  

If the H 0 is assumed to have a constant mixing ratio in the Martian atmos- 

phere this abundance corresponds to a partial pressure at the surface of 

5. 2 x 

300°K 1 .4  x 

in localized areas  considerably higher values may occur. 

they looked without success for Doppler shifted O2 lines and concluded that the 

upper limit on the O2 abundance is 70 c m  atmo. 

- 

The one photographic plate which they succeeded in obtaining 

From the in- 

- 
2 

2 

mb. The relative humidity at 273O K would be 8. 5 x and a t  

It should be emphasized that these are  averages and that 

In the same study 

Other components have not 
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been discovered, but they must be present since the C02 forms only a 

fraction, estimated to be 7 - 60 percent of the total pressure. By analogy 

with the Earth it is considered that the remainder of the pressure is made 

up by N2 and Ar. 

The solar ultraviolet radiation €lux at the surface is a vital factor of 

the ecology, but it is poorly known. and H20 in the atmosphere 

will  absorb effectively radiation with X < 1850A (Kellogg and Sagan, 1961). 

The transmission properties of the atmosphere for longer wavelength radi- 

ation is at present only guessed at. 

from observed brightness and polarization data but they cannot be regarded 

seriously because of the gross  assumptions used. On a qualitative basis 

it is reasonable to state that in general the radiation flux with X < 4400A 

is low at the surface. This follows from the observation that in general 

there is a haze which obscures the planet for these wavelengths, figure 9. 

The CO 2 

Transmissions have been derived 

The low violet albedo (ca .05) and the limb darkening commonly observed 

(but limb brightening is also noted) suggest the haze has an absorbing com- 

ponent. But the haze i s  not invariable, and it frequently clears sufficiently 

for surface details to be clearly visible in the blue, figure 9 .  This in turn 

suggests that periodically the surface will be exposed to solar radiation in 

the 1850 - 4400A range which i s  only partially attenuated by the atmosphere. 

The ozone layer which is so effective an absorber in our atmosphere must 

be very thin, if present at all, on Mars due to the very low O2 abundance 

which may be present. Kuiper (Kuiper, 1952) has put the upper level of O3 

at . 05 cm atmo, but this is still enough to act a s  an effective absorber of 

radiation with X < 2875A, us- the data of Inn and Tanaka (Inn and Tanaka, 

1953) the transmission between 2190 and 2880A is found to be 10 percent or 

less. However the 0 abundance may be much less  and its absorption may 

be ineffective in shielding the surface from solar ultraviolet radiation. 
3 
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Clearly the inadequate knowledge of the ultraviolet transmitting properties 

of the M a r s  atmosphere introduces a considerable uncertainty into attempts 

to simulate the Martian environment. 

The smaller atmospheric mass on M a r s  results in a considerably 

larger surface particle flux than on Earth (Yagoda, 1963). Assuming a pres- 

sure of 41 mb he estimates the dose rate as 6.7 x 

galactic sunspot minimum, 5. 3 x 

rads hr" during a 

rads hr" during a galactic sunspot 

maximum, and 0 . 6  rads hr-' during unusual solar flares such as  that on 

February 23, 1956. 

should probably be multiplied by a factor of 2. 5 - 3. By comparison the 

normal dose rate on Earth is ca 4 x rads hr-I. and may rise to only 

4 x This high radiation 

dosage may affect significantly any Martian life and should be considered 

For pressures in the 10 - 25 mb range these numbers 

rads hr" during exceptional solar flares. 

in Mars simulation experiments. 

Finally one should consider the nature of the inorganic surface with 

which life must be in contact. It is well known that the bright areas a re  

covered with dust, since dust storms of similar color a re  frequently ob- 

served, figure 10. 

of the bright areas Dollfus has concluded that they a re  composed of limo- 

From the spectrum and polarization curve, figure 11, 

nite, Fe203 - 3/2 H20. At the same time Kuiper from the spectrum 

throughout the visible and near infrared believes that felsitic rhyolite, an 

igneous potassium aluminum silicate, is the best candidate. This disagree- 

ment emphasize s the difficulty in determining surface composition solely 

from the polarization and intensity of reflected radiation. 

laboratory data of Dollfus (Dollfus, 1957b) reveal a complex interaction of 

several factors in producing the polarization. The absorption coefficient, 

particle size, and presumably the refractive index of the material, and the 

departure of the powdery surface from smoothness a re  critically important. 

The extensive 
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On the last point the angle of inversion shifts to higher phase angles as 

the surface is stirred up, with the following displacements observed -- 
antimony - 19 + 27 , carborundum - 10 -# 14O, emery - 16 + ZOO. 

Moreover the polarization observed i s  the net polarization produced by 

the surface and the atmosphere. Dollfus has estimated the atmospheric 

0 

contribution and has corrected the observed data accordingly to produce 1 

figure 11, which should then apply to the surface. 

doubts about the validity of the correction since they apply to a Rayleigh 

There a re  however 

scattering atmosphere with a surface pressure of 90 mb, while the pres- 

sure may be only 25 mb (Kaplan et al, 1964). If the discrepancy is due 

to some of Dollfus' approximations other than that of Rayleigh scattering 

then the appropriate correction would be only about 30 percent of that 

used. But if the difference is due to the presence of small particles in 

the atmosphere the correction may even be opposite in sign to that em- 

ployed. This follows from the fact that Rayleigh scattering is always 

positively polarized whereas scattering by particles can have an initial 

strong negative wing. The negative branch for the surface may then be 

less  pronounced than that observed, and the inversion angle will occur 

a t  a smaller angle. All of these considerations indicate that the argu- 

ments for limonite a re  weak and that other possibilities should be ex- 

amined in detail. 

The Evidence for Life 

One of the most intriguing and controversial points is the question of 

In 1877 Schiaparelli detected a network of straight lines which the canals. 

he named ''canali". In subsequent years Lowell (Lowell, 1908) observed 

them repeatedly and drew a very complex picture of canals intersecting at 
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small dark spots which he called oases, figure 12. The canals were some- 

times double and in time totaled over 400, being present in both the bright 

and dark areas. They were on or close to great circles, a regularity which 

Lowell considered highly significant. He rejected natural phenomena on the 

basis that no such features of comparable length (up to 5600 km) are  present 

on Earth or the Moon. The regularity then is a product of intelligent beings 

who constructed canals to carry water from the polar caps to the dry areas 

towards the equator. The dark lines result from vegetation growing on i r r i -  

gated land along the canals. 

As mentioned initially this imaginative hypothesis is no longer accepted 

and the reality of the unbroken lines has frequently been questioned (e.g. 

Dollfus, 1961). At the Pic du Midi, a site which possesses excellent seeing 

conditions, the lines have been detected but they a re  resolved during the best 

seeing into a series of irregular areas. 

These comments on the canals all refer to visual observations. 

Recording the canals on plates is difficult since the resolution attainable 

with photography is considerably poorer than with the eye, and only the 

more pronounced ones have been successfully photographed (Slipher, 1962). 

The most frequent explanation for the canals is that they are  depressed 

linear features such a s  graben, whose floors have a lower albedo than the 

surroundings. The reason for the lower albedo may be the presence of vege- 

tation (Fielder, 1963). However it seems strange that small depressions 

would be maintained for long periods of time in view of the recurring dust 

storms. It is logical to believe the dust would settle in the low areas and 

eventually f i l l  any valleys which had existed a t  some time in Mars '  history. 

Any low areas which are  still present should be dust-covered, and hence 

be bright and not dark. A more reasonable explanation for the origin of 
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the dark canals is that they are indeed associated with faulting of the Martian 

crust, but are  elevated features such as  crater chains or ridges. Such fea- 

tures are  present both on Earth and on the Moon, although not to the same 

extent a s  appears to be the case on Mars. It would appear rash though to 

reject this proposal merely because we have no other exact counterpart at 

hand. 

A feature tbat is in certain ways characteristic of vegetation is the 

range of colors reported for the dark areas. These change with the seasons, 

and a variety of blues, browns, greens and other shades have been noted. 

The reality of these colors is however questionable since there a re  no ob- 

jective measurements of colors other than reddish in the literature. Dollfus' 

spectra of the bright and dark areas (Dollfus, 1957a),figure 13, show the 

dark areas to be brighter in the red than in the blue, although the difference 

is less than for the bright areas. In view of the lack of objective corrobo- 

ration it appears preferable to be conservative and to attribute the various 

colors to aberrations in the telescopes, to contrast effects ar is ing from 

the comparison with the adjacent brighter, more reddish areas,  to the effect 

of seeing (Kuiper, 1955), o r  to a combination of these. 

A distinctive feature of the Martian scene is the seasonal variations 

of the intensity and polarization of the light reflected by the dark areas.  

During winter in a particular hemisphere the dark areas in the hemis- 

phere are  relatively light. When spring comes the polar cap starts to 

recede and the dark areas near the cap become darker. As the season 

progresses the darkening moves to lower latitudes and eventually crosses 

the equator in late s u m m e r  or autumn, figure 14, 15. 

the change in brightness is  a change in polarization, figures 16, 17. It has 

been argued that these effects are due to a growth of Martian organisms 

Associated with 
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which occurs as the water vapor from the receding polar cap traverses the 

planet to the other pole. Dollfus has interpreted the change in polarization 

to be due to a change in particle size, and suggests the new particles may 

be micro-organisms. However his attempts to simulate the effect by sprink- 

ling organisms on powdered limonite surface produced contrary results. 

On the basis that we should first look for abiological explanations I 

have examined such possibilities and have concluded that at least one seems 

quite possible (Rea, 1963, 1964). First it should be noted that the tempera- 

ture regime militates against a biological explanation. In figure 18 I have 

plotted the temperatures when the height of the darkening wave was attained 

for several areas.  

particular for Depressio Hellespontica where it is only -28O C. 

be low due to experimental error or to an emissivity less than 1. It seems 

somewhat improbable however that the corrections will raise the tempera- 

ture above - loo  C. While life utilizing water a s  a solvent may exist under 

such thermal conditions it must be truly unique to exhibit the growth charac- 

teristics of Depressio Hellespontica. 

logical explanation for the darkening of this area unlikely, and if  this is  

accepted it is only natural to extend this conclusion to the darkening wave 

for all of the areas. 

It is noted that the temperatures are  rather low, in 

This may 

In my opinion this renders the bio- 

If this is improbable, can a reasonable abiological hypothesis be 

presented? I believe this can be done by utilizing a dust idea introduced 

by Kuiper (Kuiper, 1957). 

result of a seasonal variation in the wind patterns. 

smaller dust particles, leaving behind the larger particles which give a 

darker surface (there is less  multiple scattering involving transmitted light) 

and the characteristic polarization change, figure 19. 

is that the remaining surface is rougher, perhaps consisting of loosely 

In this interpretation the darkening wave is the 

The wind blows off the 

Another possibility 
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cemented particles, since this would also explain the albedo and polarization 

effects. Then the normal wind pattern returns, the small dust particles settle 

again on the ground, and it reverts to its appearance before the onset of the 

winds. It is also consistent but not necessary to postulate that the composi- 

tion of the dark and light areas is the same, the only difference being in the 

particle size. 

that only the larger particles or agglomerated small particles would be able 

to remain on them, the independent smaller particles generally settling in 

the lower areas. 

lb the dust hypothesis the dark areas would be elevated so 

This proposal explains nicely the regenerative property of the dark 

After a dust storm, which can cover a major part of the planet, areas. 

the dark areas a re  not obscured for a long period, but rapidly regain their 

pre-storm appearance. Opik (Opik, 1962) has argued that this must be 

due to a Martian life which would project through a settled dust layer, for 

otherwise the dust would have created a planet of uniform level. 

argument is weakened by the widely held belief (e. g. Dollfus, 196l),which 

he also subscribes to, that Mars  does not have a surface of uniform eleva- 

tion, figure 20. 

explained by the dust settling predominantly in lower areas,  leaving the 

higher dark areas in essentially their normal state. 

VI I 1  

This 

In the present model this regenerative feature is readily 

A n  observation which supports this model is the temporary darkening 

of normally bright areas during a dust storm (Slipher, 1962). Slipher states 

that along the edges of large yellow clouds there a re  transitory dark regions 

which he believes a re  due to moistening of the soil by precipitated water, 

figure 21. However the dryness of the atmosphere must ensure that any 

wetting of the soil will be possible only for brief periods in early morning, 

and certainly not in the middle of the day. A more probable explanation is 

that the bright area has had its  overlying dust layer temporarily removed 



c 

- 1 5 -  
1 

by the intense winds which caused the dust storm laying bare the underlying 

stratum. After the storm has subsided, or has moved to a different location 

on the planet, the dust settles back and the bright aspect is regained. 

Other abiological explanations for the seasonal phenomena have also 

been advanced. Arrhenius (Arrhenius, 1918) has proposed that the canals 

a r e  covered with hygroscopic salts which form concentrated brine solutions 

as water becomes available. The large dark areas in winter are  frozen 

solutions covered with dust; in spring and summer they melt and the dust 

settles to the bottom. The solutions have a low reflecting power and appear 

dark. 

phere 

This is not now accepted because of the low humidity of the atmos- 

and the failure to observe specular renection from the canals and 

dark areas.  

Any change, due to hydration or other effects, which increases the 

absorption coefficient of the surface material wil l  explain both the inten- 

sity and polarization shifts. 

though suitable mechanisms have not yet been proposed. 

This possibility must be kept in mind even 

On the basis of these remarks it seems justified to conclude that 

abiological hypotheses be given at least equal credence as a Martian biota 

for explaining the seasonal variations. 

In addition to seasonal changes there a re  secular changes which 

Of the several which a re  pictured have affected many different areas. 

in Slipher's book one of the most impressive is the variation in the Thoth- 

Nepenthes region, figure 22. 

change is Hellas. 

caps, but in 1954 this 800,000 km 

opposition it was again bright. 

explained by variations in the vegetation coverage of the surface. 

ever they may also arise from volcanic activity (McLaughlin, 1954), 

Another area which underwent an unusual 

It is normally very bright, second only to the polar 

2 region w a s  very dark. At the 1956 

Secular changes such a s  these could be 

How- 
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faulting due to internal activity, or perhaps from a redistribution of the dust. 

The time scale for observed phenomena can be very short, e. g. for the Hellas 

darkening, so that the prospects a re  poor for a Martian life to expand suffi- 

ciently rapidly over such la rge  areas  in the rigorous Martian environment. 

One of the most direct observations bearing on the existence of life on 

M a r s  was made by Sinton (Sinton, 1959, 1961). Using the 200 inch telescope 

he recorded the 3 - 4 p  spectrum of selected areas on the planet. The spectra 

possess features which he identified a s  minima occurring at 3.45, 3.58 and 

3 . 6 9 ~ ~  and which a re  more pronounced for the dark than for the bright areas,  

figure 23, After examining selected spectra of inorganic, organic and bio- 

logical specimens he concluded that the minima are  probably due to absorp- 

tion by CH bonds , and in particular that the 3.69 )I minimum testifies to the 

presence of carbohydrates. The concentration of this organic matter is higher 

on the dark areas and, in conjunction with the other phenomena associated 

with them, is then strongly indicative of the presence of life. Later Colthup 

(Colthup, 1961) noted that the relative intensity of the 3 .69~  band is too intense 

for carbohydrates, that it must be due to an aldehyde CH, and in particular 

that acetaldehyde is its most likely source. However this is a very volatile 

chemical and under Martian conditions must all be in the vapor phase (Rea, 

1962). Then some mechanism must be devised to explain its preferential 

concentration over the dark areas. 

but it does make the interpretation somewhat artifical and forced. 

This can conceivably be accomplished, 

It is possible that the 3.69 and 3.58 p bands a re  due to other aldehydes 

than acetaldehyde since conjugating the aldehyde group with an olefinic or  

aromatic system does not shift these bands appreciably (Pinchas, 1955). 

However it must be remembered that the relative intensities of the 3. 69 

and 3.45 p bands a re  such that the mole ratio of CH2 t CH3 groups to CHO 

groups can not be greater than about 2 : 1. On the basis of our terrestrial 

experience such systems, covering the major part of large areas of a 



planetary surface, are  difficult to conceive. Of course the absorbers may 

be in the vapor phase, but the criticism raised against acetaldehyde wil l  

then apply. 

The entire question of the source of the Sinton bands has been exa- 

mined in detail in our laboratory (Rea, et al, 1963). 

the reflection spectra of a large number of inorganic, organic and biolo- 

gical samples, but have failed to find a satisfactory explanation for the 

features. It is not difficult to find organic samples with a band near 

3. 45 p,, e. g. cellulose, figure 24. But the other two, and in particular 

that at 3. 69 )L do not have ready explanations. The situation isno better 

for the inorganics -- carbonates can be used to explain the 3.45 p, band, 

e. g. CaC03, figure 25, but not the others unless one postulates the sur- 

face has large concentrations of BaCO and/or PbC03. Since this is im- 

probable due to the low cosmic abundance of these cations we are  left in 

a most unsatisfactory s t a t e  -- no explanation that we consider acceptable 

has been found. 

as an argument for the existence of Martian life. 

We have recorded 

3 

Considering this I do not prefer to use the Sinton bands 

Conclusion 

It is a fair statement to say that the evidence for life on Mars is 

very uncertain, and that better data are required. 

graphical details, and in particular are  the canals and dark areas elevated 

or  depressed? 

tained with high spatial re  solution provide objective confirmation? W h a t  

is the dependence of the spectral brightness and polarization of powdered 

samples of limonite, felsitic rhyolite, and other possible materials on 

the particle size distribution? W i l l  infrared spectra, obtained with higher 

Wha t  a r e  the topo- 

Are the blues and greens artifacts, or will spectra ob- 
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spatial and spectral resolution, give spectral details that will clarify the 

assignment of the Sinton bands and spatial information that will decide 

whether the absorber is in the atmosphere or on the surface? W i l l  infra- 

red spectra in wavelength regions not accessible to ground-based telescopes 

reveal bands due to olefinic o r  aromatic CH groups or to the C = 0 bond 

and perhaps shed new light on the origin of the Sinton bands? 

But, no matter what the answers to these questions are, we will  not 

be able to make positive statements about the existence of life on M a r s  till 

biological laboratories a re  placed on the surface. The remote investigations 

will provide invaluable information in designing the biological experiments 

and in choosing a landing site, but they can not answer the initial questions 

-- is there life on Mars, and i f  so what is its nature? 
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FIGURE C A P T I O N S  

Figure 1 

The appearance of Mars in 1954 (Finsen, 1961). 

Figure 2 

Average Martian southern hemisphere summer isotherms, 

(Gifford, 1956). 

Figure 3 

Theoretical and observed diurnal temperature variation at the 

equator of Mars  (Sinton and Strong, 1960). 

Figure 4 

Average temperature variation along the Martian noon meridian 

for the various seasons (Gifford, 1956). 

Figure 5 

A microphotometer tracing of the R-branch in the 5v3 C02 band 

of Mars.  The measured lines J = 8 ,  10, 12, and two solar lines 

a re  also shown (Kaplan et al, 1964). 

Figure 6 

Equivalent width of 2 t . ~  band complex vs. C02 amount times 

effective pressure. 

telluric air-masses q, above curve for Earth plus Mars from 

Sinton (S) and Kuiper upper and lower limits (K) (Kaplan et  al, 

1964). 

Abscissa markings below curve for  various 

Figure 7 

Phase curve of H20,  calculated from data in the International 

Critical Tables. 

Figure 8 

Doppler shifted H 2 0 Martian lines (Spinrad et al, 1963). 



FIGURE CAPTIONS (Continued) 

Figure 9 

Comparisons of yellow and blue photographs showing the presence 

of the obscuring blue haze together wi th  partial clearings (Slipher, 1962). 

Figure 10 

The great dust storm of 1956 (Slipher, 1962). 

Figure 11 

The curve in the observed polarization of the bright areas,  the dots 
represent laboratory measurements of pulverized limonite (Dollfus, 1961). 

Figure 12 

A drawing of Mars by Slipher showing many of the canals (Slipher, 1962). 

Figure 13 

The spectra of the bright and dark areas (Dollfus, 1957). 

Figure 14 

The darkening wave, as particularly exemplified by Pandorae 

Fretum (Slipher, 1962). 

Figure 15 

Brightness variations of the dark areas plotted against the heliocentric 
longitude. 
obtained by Focas (Dollfus, 1961). 

South is at the top, north at the bottom. The data were 

Figure 16 

The change in the polarization of the dark areas with the season. 

The filled circles are for equatorial markings at  Martian spring, 

the open circles for markings in the northern hemisphere at 

Martian spring (Dollfus, 1961). 

Figure 17 

The seasonal variation of the polarization on Mars .  

against the heliocentric longitude, for a phase angle V = 25O, 

are  the polarization differences between the dark and bright 

areas  (Dollfus, 1961). 

Plotted 



FIGURE CAPTIONS (Continued) 

Figure 18 

The noon surface temperature at the height of the darkening wave 

for various dark areas. 

Figure 19 

Polarization curves for a basalt with varying particle size 

(Wright et al, 1963). 

Figure 20 

The repeated occurrence of W-shaped clouds over the Tharsis 

region in 1954 (Slipher, 1962). 

Figure 21 

Examples of temporary dark areas  adjacent to dust clouds, 

observed in 1956. 

is to the left of Solis Lacus, in the upper right one the normally 

bright Thaumasia is dark. 

normal appearance (Slipher, 1962). 

In the upper left hand photograph the spot 

The 1941 pictures indicate the 

Figure 22 

Pronounced secular changes in the Thoth-Nepenthe s region 

(Slipher, 1962). 

Figure 23 

The 3 - 4 p spectrum of Mars observed by W. M. Sinton 

(Rea et al, 1963). 

Figure 24 

The reflection spectrum of cellulose (Rea e t  al, 1963). 

Figure 25 

The transmission and reflection spectra of CaCO 3 (Rea e t  al, 1963). 



TABLE 1 

Some Physical Properties of Mars and Earth 

M a r s  Earth 

Mass ( g )  ........................ 0. 646 
Diameter (l-4 ................... 6800 

Average density (g crn-’) ......... 3. 96 

Surface gravitational 
370 

228 x 10 

-2 acceleration (cm sec 1 ........ 
Mean distance from Sun (km) ...... 6 

Angle between rotation axis and 
orbital plane (deg. ) ............ 

Length of year (days) ............. 
Length of southern spring (days) ... 
Length of southern summer (days). . 
Length of southern fall (days) ...... 
Length of southern winter (days) ... 
Length of day (hours) ............ 

24. 5 

687 

146 

160 

199 

182 

24. 6 

5.98 x 

12,800 

5. 52 

981 

150 x 10 6 

23. 5 

365 

91 

87 

93 

94 

24 
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MARS H20 LINES 
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8226.96 
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Figure 8. -- Doppler shifted H20 Martian lines (Spinrad et al, 1963). 
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Figure 9. -- Comparisons of yellow and blue photographs showing the 

presence of the obscuring blue haze together with partial 

clearings (Slipher, 1962). 
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Figure  10. - -  The g r e a t  dust  storm of 1956 (Slipher, 1962). 
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Figure 14 -- The darkening wave, as  particularly exemplified 
by Pandorae Fretum (Slipher, 1962). 
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Figure 22, - -  Pronounced secular changes in the Thoth-Nepenthes region (Slipher, 1962).  
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